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Introduction

Research on intelligent tutoring serves two goals. The obvious goal is to develop systems

for automating education. Private human tutors are very effective (Bloom, 1984), and it would

be nice to be able to deliver this effectiveness without incurring the high cost of human

tutors. However, a second and equally important goal is to explore epistemological issues

concerning the nature of the knowledge that is being tutored and how that knowledge can

be learned. We take it as an axiom that a tutor will be effective to the extent that it

embodies correct decisions on these epistemological issues.

We chose Intelligent tutoring as a domain for testing out the ACT' theory of cognition

(Anderson, 1983). it was a theory that made claims about the organization and acquisition

of complex cognitive skids. The only way to adequately test the sufficiency of the theory was

to interface it with the acquisition of realistically complex skills by large populations of

students. When we read the Intelligent Tutoring book edited by Sleeman and Brown (1982)

it became apparent that the authors in it were explicitly or implicitly performing such tests of

theogies of cognition and that is was an appropriate methdology for testing the ACT' theory.

The ACT' theory has been used to construct performance models of how students

actually execute the skills that are to be tutored and learning models of how these skills are

acquired. The performance mode! is used in a a paradigm we call model tracing, in which

we try to follow in real time the cognitive states that the student goes through in solving a

problem. Our instruction is predicated on the assumption that when we interrupt students

we correctly understand their internal states. The learning model is used to infer a

student's knowledge state by tracing the student's performance across problems. This

knowledge tracing (as opposed to problem-state tracing) can be used to disambiguate

alternative interpretations of student behavior and for selecting problems to optimize learning.

We are currently working on tutors for beginning LISP programming (Reiser. Arderson, &

Farrell, 1985), for generation of proofs in high school geometry (Anderson, Boyle, & Yost,
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1985). and for soliing algebraic manipulation and word problems (Lewis. Miison, & Anderson.

in press). These domains were selected because they involve the acquisition of well-defined

skills and we can catch students at the point where they are lust beginning to learn the

skill. Our LISP tutor currently teaches a successful university-level course, and our geometry

tutor is in the midst of its first demonstration in the high schools-an apparently successful

demonstration. We believe that these tutors owe their success to the cognitive principles

from which they were derived. However, it is not the case that the cognitive principles have

remained unchanged in the face of these applications. In fact, we have found reasons to

reject certain assuoptions of the ACT cognitive architecture and are working with a new

architecture called PUPS (for PbnUttimate Production System). So, even at this early stage

of our endeavor, we have seen a fairy profitable flow of influence back and forth between

the theory and the application.

This paper has three matey sections. The first describes the cognitive theory that serves

as the basis for our tutoring endeavours. The second section describes the model-tracing

methodology and how it derives from our cognitive theory. The third section discusses the

issues that arise in implementing the model-tracing methodology.

The Cognitive Theory

The Performance Theory

In both the PUPS theory and its ACT predecessor, a fundamental they -al distinction

was made between declarative and procedural knowledge. This distinction borrowed its label

from the distinction in Al a decade ago (e.g., Winograd, 1975) but has been fundamentally

transformed to be a psychological distinction. Declarative knowledge is distinguished by the

fact that the human system can encode it quickly and without commitment to how it will be

used. Declarative knowledge is what is deposited in human memory when someone is told

something, as in instruction or reading a text. Procedural knowledge on the other hand can

only be acquired through the use of the declarative knowledge, often aher trial and error

practice, and is further characterized by the fact that it embodies the knowledge in a highly
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efficient and use-specific way. In the theory, procedural knowledge derives as a by-product

of the interpretative use of declarative knowledge. In fact. we use the term knowledge

compilation to refer to the learning process which creates the procedural knowlodge.

Procedural Knowledge: Productions

In the ACT' theory, procedural knowledge is represented by a set of production rules

that define the expert skill. Our goal in tutoring is basically to create experiences that will

cause students to acquire such production rules. It would be worthwhile to examine some

examples of productions that are used in our three domains of tutoringi.e.,LISP, geometry,

and algebra. Below Hie "Englishified" versions of a couple of the productions that are

used in the LISP tutor:

IF the pal is to merge the elements of list and lis2 into a list
THEN use append and set as subgoals to code list and lis2

IF the goal is to code a function on a list structure
and that function must inspect every atom of the list structure
and the list structure is arbitrarily complex

THEN try car-cdr recursion and set as subgoals
1. to figure out the recursive relation for car-cdr recursion
2. to figure out the terminating cases when the argument

is nil or an atom

The first is a production that recognizes the relevence of a basic LISP function and the

second is one that recognizes the .?.pplicability of a recursive programming technique. These

and approximately 500 more production rules model an ideal student writing basic LISP code

to solve problems that would appear in an introductory LISP textbook. These productions all

have this goal decomposition character of starting with some programming goal and

decomposing it into subgoals until goals are rerthed which can be achieved with direct

code. For an extensive discussion of a model of beginning LISP programming see

Anderson, Farrell, and Sauers (1984).

The character of the production rules underlying the geometry tutor are somewhat

different. Below are two examples from the approximately 300 in that system:

IF the goal is to prove A XYZ ; A VW

7



www.manaraa.com

4

and XYW are colinear
and UYZ are colinear

THEN conclude Z XYZ ; LUAU because of vertical angles

IF the goal is to prove AXYZ ; A UVW
and XY ; UV
and `71 ; VW

THEN set a subgoal to prove ZXYZ ; ZUVW so SAS can be used.

The first production makes a forward inference from what is known about a problem

while the second makes a backward inference from what is to be proved. A proof is

completed when a line of subgoals from the to-be-proven statement makes contact with a

line of forward inferences from the givens of the problem. The production rules for forward

and backward inference are contextually constrained. That is, they not only make reference

to the information necessary for application of the rule but also to other information about

the proof which is predictive of the aptness of that inference. Thus for instance, the first

rule not only makes reference to the collinearfty information which is logically necessary for

application of the vertical angle rule; it also makes reference to the fact that these angles

are corresponding parts of to-be-proven-congruent triangles. For more discussion of the

nature of the ideal student model in geometry read Anderson (1981) and Anderson. Boyle.

and Yost (1985).

The production system for the algebra tutor is again somewhat different in character

from the production systems for LISP or geometry. Below are three of the production rules

involved in modelling the ideal student's knowledge of distribution:

IF the equation to be solved contains a subexpression of the form
"num(exp1 + exp2)"

THEN set as a subgoal to distribute num over (exp1 + exp2)

IF the goal is to distribute num1 over exp
and "num2 var" is the first term in exp

THEN write "num3 var," where num3 is the product of numl and num2
and set a subgoal to distribute num1 over the rest of exp

IF the goal is to distribute num1 over "+ num2"
THEN write "+ num3," where num3 is the product of numl and num2
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Th.sse rules would be invoked if, for instance, there were an expression of the form

...3(5x + 2)... somewhere in the equation to be solved. The first rule recognizes the

applicability of distribution: the second writes out "15x;" and the third writes out " + 6 "

The algebra rules highlight the issue of grain size which is also an issue for other

production systems. We could have compacted all three of these rues into a single

production rule which recognized and applied distribution to the equation in one fell swoop

(as, for instance, Sleeman, 1982, does). On the other hand, we could have broken each of

these steps into multiple substeps. For instance, note that we do not model the process of

calculating the product of num1 and n.um3 into a set of substeps as it might well be

implemented cogritively. Our decision about the level at which to model the student was

determined by pedagogical considerations Students entering the algebra course have their

multiplication skills well-learned and do not need to be tutored on these. In contrast,

students do have proolems with the subcomponents of distribution and so we need to

separate these out for purposes of separate tutoring.

An implication is that the production rules that we use in the algebra tutor. and indeed

in the other tutors, represent only upper levels of the skill. These productions set subgoals

which are met by other productions and are typically accomplished in our systems by calls

to LISP code. These include such things as the actual typing cf answers into the

computer. The assumption is that such productions. below the level that we are modelling,

are well-learned.

While the production systems for the different domains do have some features in

common, they also have rather different overall structures. Our learning theory would predict

that the different task structures of the different domains produce different organizations of

the production rules. Generating LISP code is a design activity and lends itself to a problem

decomposition structure. The search character of generating geometry proofs produces an

opportunistic structure in which there can be large switches of attention among parts of the

proof. The linear structure of the algebra equations and the algorithmic character of
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algebra equation solving produces the symbol substitution character of the algebraic rules.

One of the major functions of a tutor for a particular domain should be to communicate the

ideal problem-solving structure of that domain.

Declarative Knowledge: PUPS Structures

Knowledge is not originally encoded by students in such use-specific production form but

rather is encoded declaratively in what we have come to call PUPS structures. PUPS

structures are basically schema-like structures which are distinguished by the fact that they

have certain special slots which prove critical to their interpretive application in problem-

solving. These include the function slot which serves to indicate the function of the entity

represented by the structure, the form slot which indicates its form, and the precondition

slot which states any preconditions that must be satisfied for that form to achieve that

function. To illustrate such structures let us consider how an ideal student might encode

the following fragment of text from the second edition of Winston and Horn (1984), p.24:

The value returned by car is the first element of the list given as its argument.

(CAR '(FAST COMPUTERS ARE NICE))
FAST

This Winston and Horn example is interesting because it contains a nice juxtaposition of

some abstract instruction with a specific example. However. the PUPS encodings of the two

(given below) are basically structurally isomorphic. The abstract encoding of car contains a

prerequisite pointer to structure that indicates how car is to be used. The example

structure has the same form as structure, except that an argument is specified. Two other

PUPS structures encode that argument and the value returned by tho example call.

Car

structure

ISA: function
FUNCTION: (implements first)

FORM: (text car)
PRECONDI7 .)N: (type structure)

ISA: lisp-code
FUNCTION: (calculate (first arg))

FORM: (list Car arg)

example ISA: lisp-code

10
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fast

FUNCTION:

FORM:

ISA:
FUNCTION:

FORM:

ISA:
FUNCTION:

FORM:

7

(illustrate car)
(calculate (first lis))
(list car lis)

list
(argument-in example)
(hold (fast computers are nice))
(list Vast computers are nice))

atom
(value-of example)
(first !is)
(text fast)

The structures above represent the outcome of successful encoding of the text: however,

it should be stressed that there is a lot of room for incorrect encoding. Incorrect encoding

of text into PUPS structures is what goes by the name of "misunderstanding ". Clearly, a

critical issue for learning is correct interpretation of the instruction. One problem with

virtually all instructional material is that it omits many things that the student needs to know

in order to perform the tasks. and the student is left to figure them out by trial and error

experimentation. One of the payoffs in developing an idea: student model, even before it is

used in tutoring, is that it provides a cognitive analysis of what the student really needs to

know. Instruction can then be designed to communicate that. In our work we have found

that instructional materials designed to communicate all the information in the ideal model

(and not waste prose communicating non-information) are more effective than standard texts

even without a tutor. This emphasis on economy and focus in instruction has been

confirmed by a number of other researchers (Carroll, 1985; Reder, Charney, & Morgan. in

press).

However, we believe that it is not possible to avoid all or even most misinterpretations.

In communicating unfamiliar material there is the inevitable difficulty of the student being

weak on the key concepts. For instance, we have never observed any student to go from

reading any textbook on LISP to practicing that knowledge without errors. One important

role for a tutor is to monitor for these errors of misunderstanding and correct them as they

show up in the performance of a task.

11
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Interpretive Use of Declarative Knowledge

We assume that the declarative PUPS-structures illustrated above are deposited in

memory essentially as the product of language comprehension. It is important that the

necessary structures get encoded correctly, but this is by no (mans the end state of the

;eat h;ng process. These structures do not directly lead to any performance and it is

necessary to interpret them to get performance. This interpretive process is of high demand

cognitively and is a major cause of slips in performance (Anderson & Jeffries, 1985;

Norman, 1981). It is important to crea..) productions like the ones in the ideal model which

will automatically apply me knowledge.

There is essentially a double loop of inefficiency promoted by interpretive use of

declarative knowledge. The inner loop involves the analogies' application of the declarative

knowledge encoded in PUPS - structures to a new domain to produce a step of problem

solution. It is costly in terms of the amount of information mat must be held in working

memory to llompute this analogy. So, for instance, a student might go through a prolonged

effort trying to map the general statement of the side - angle -side postulate to a specific

problem (Anderson, 1982). The outer loop involves a search through the problem space

defined by these steps for a problem solution. So, for instance. a student might search

through all the postulates for proving the angles congruent: side-sideside. side-angle-side.

etc. While it is not possible to entirely avoid searcn, the productions in the ideal model

have features built into them that greatly cut down on this search. The example

productions we displayed earlier for geometry illustrate this in that they included heuristic

tests that checked for likelihood that a rule of inference would contribute to a final proof.

Analogy

To illustrate the analogy process, suppose the student has the goal of getting the first

element of the list (A B C). This is represented by the PUPS structures below:

goal ISA: liso-code
FUNCTION: (calculate (first 1102))

FORM: ?

12



www.manaraa.com

9

lis2 ISA: list
FUNCTION: (hold (a b

F JRM: ?

As is typically the case in the PUPS representation of a problem-solving situation we

have PUPS structures with functions represented but forms empty. The goal is to create

forms that satisfy the functional specification. Both of these forms can be calculated by

analogy to the earlier PUPS structures created from comprehension of the Winston and Horn

instruction. Using example as the source for Me analogy and goal as the target, PUPS

creates the following analogy:

function(source): fofm(source)::function(target):?

lis from the example is mapped to 11s2 from the target and the specification (LIST CAR

lis2) is created for the form slot. A similar analogy between Its and lid leads to the

description (LIST '(A B C)) for the form slot of lis2. This constitutes a solution to he

problem.

Knowledge Compilation

What we have just described is a solution by analogy for a specific example problem

This analogy process is costly in terms of computing the mapping. It will a:so only work

when there is an example at hand. Knowledge ,,ompilation tries to analyze the essence of

this solution and produce a production rule that can produce this solution at will. Basically,

it does this by looking at the situation before and the situation after and creating a

production rule that maps one onto the other. Essential to knowledge compilation is

diagnosing what was critical in the before situation and what is critical in the enlution. This

depends on the semantics of the PUPS structure. The result of the compilation process for

this example is

IF the goal is to get the first element of =list
THEN type (car = list)

The knowledge compilation process that produced this has to know about the

13
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correspondences computed in calculating the analogy. Thus, this learitig mechanism has

built into it knowledge of how PUPS structures are interpreted in analogy.

Search

A second thing knowledge compilation will do is eliminate some of the relatively blind

search that characterizes early problem solving. Consider the diagram in Figure 1. which

shows a problem that appears early in the geometry problem sequence. The student is

given that two sides of the triangles are congruent and must try to prove that the triangles

are congruent. At this point the student has only learned of the side-side-side and side-

angle-side postulates for proving triangles congruent. One student, not atypical, was

observed to (1) try side-angle-side but fail because there is not an angle congruence; (2) try

side-side-side but fail because only two Wei are given as congruent; (3) apply the definition

of congruenda that the measure of A6 is equal to the measure of Z15; (4) Apply the

reflexive rule to infer 0 is congruent to itself; and, (5) finally, applying the reflexive rule, to

infer that BD is congruent to itself. This last step was the key one that allowed the

student to immediately apply the SSS rule, to achieve his goal. It seemed that the subject

engaged in a random search of :egal operators until he came across one that was useful.

Insert Figure 1 about here

Know lege compilation creates rules that skip over the steps that were not relevant to the

final solution and try to produce a rule that connects key features in the original situation

with the ultimately useful operator. The rule that should be produced in this case is:

IF me goal is to infer A XYZ ; A UYZ
THEN infer V7 = V7 because of the reflexive property of congruence

Note his rule is not specific, co the solution of this problem by SSS nor to the fact that

there are already two sides proven congruent. This is what we noted of our subject: He

emerged from this episode with a tendency to infer the shared side of two triangles is

congruent to itself whenever he set as his goal to prove these triangles congruent.

14
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This geometry example illustrates the general features of learning from search: If the

student applies a number of operators and some of the operators prove successful - -in the

geometry example a number of inferences have been applied and one has proven part of

the final proof --the student can encode in declarative structures how the operators achieved

their successful function and this information can be compiled into new production rules. It

is critical that the students properly encode their experience and this is again where tutors

can be critical-by assuring the proper encoding of the experiznce. So for instance, in the

reflexive case discussed above, if the student represented the function of the rule as

establishing side-side-side he would have created too specific a rule. On the other hand.' if

he represented it as just maNtig a legal inference he would have created too general a

rule.

Strengthening

In addition to knowledge compilation, there is a simple strengthening of declarative and

procedural knowledge with use. As knowledge becomes strengthened it comes to be

applied more rmoidly and reliably. There is ample empirical evidence for such a simple

learning process in humans although its exact nature is in some dispute (Anderson. 1982).

The major implication of a strengthening-like process for tutoring concerns the introduction of

new knowledge. As the execution of acquired knowledge becomes mure proficient there is

more capacity left over to properly process the new knowledge.

Other Learning Mechanisms?

An important characteristic of this model is what it does not contain. Unlike the ACT

line of learning theories there are no inductive learning mechanisms that automatically

compare the current situation with past situations and try to form generalizations and

discriminations about when rules will and will not apply. This is not to say that subjects do

not engage sometimes in inductive behavior as a conscious problem-solving activity-they

certainly do. Rather the claim is that there is not an automatic learning mechanism of the

status of compilation and strengthening. Generalizations and discriminations are declarative
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knowledge structures produced by problem solving productions rather than productions

produced by automatic learning mechanisms. There is a fair amount of evidence that

people are aware of their inductive generalizations and discriminations (Lewis & Anderson,

1985: Dulany. Carlson, & Dewey, 1984).

This has major implications for instruction. Ratner than leaving students to induce

generalizations and discriminations from carefully juxtaposed examples, which would have

been the pedagogical implication of ACT, one should simply tell the student what the critical

features are. Thus, if a student is overusing the vertical angle Inference he should be told

the circumstance ender .vhich he wants to use it. This is not to argue that examples are

not important, but they should be annotated with information about what they are supposed

to illustrate.

Converting Theory to Tutoring: Modal Tracing

This theory of knowledge acquisition is radical in the juxtaposition of its simplicity and its

claim to completeness. To review, learning in the theory involves:

1. Acquisition of new declarative knowledge by tha processing of experience through

existing productions (eg. for language comprehension).

2. Application of declarative knowledge to new situations (i.e.. situations for which

productions do not exist) by means of analogy and pure search.

3. Compilation of domain-specific productions,

4. Strengthening of declarative and procedural knowledge.

Probably there little controversy that these things (or something very similar to them)

are involved in knowledge acquisition, but the issue is whether these assumptions are

sufficient to account for all knowledge acquisition. The question is how do we put that
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theory to test. As argued in detail elsewhere (Anderson. in preparation) the tutoring work is

a methodology for testing the theory. Since the design of the tutors is based on the

theoretical analysis, the success of the tutors is one test of the theory. Moreover, one can

ask whether the course of learning displayed with the tutor is in detail as predicted by the

theory.

The simplicity of the underlying theory maps onto a rather straight forward tutoring

methodology that we call model tracing. The basic idea is to use the learning model to

trace the student's knowledge state across problems and to use the performance model to

trace the student's problem state within a problem. Problems and accompanying instruction

are selected to practice the student on productions that are diagnosed as weak or missing

in the student's knowledge state. Instruction is generated that the student should be able

to map onto the solution of a problem to enable the student to correctly interpret that

solution. Given this structuring of the learning situation, we trust the automatic learning

mechanisms in (1)-(4) above to move the student forward on an optimal learning trajectory.

FirSt, we will give some examples of this model-tracing methodology. Then, we will

discuss some issues in implementing it.

The LISP Tutor

The LISP tutor is based on our earlier efforts to model learning to program in LISP

(Anderson, Farrell, & Sauers, 1984). Table 1 contains a dialog with a student coding a

recursive function to calculate factorial. This does not present the tutor as it really appears.

Instead, it shows a "teletype" version of the tutor where the interaction is linearized. In the

actual tutor the interaction involves updates to various windows. In the teletype version the

tutor's output is given in normal type while the student's input is shown in bold characters.

These listings present "snapshots" of the interaction; each time the student produces a

response, we have listed his input along with the tutor's response (numbered for

convenience). The total code as it appears on the screen is shown, although the student

has added only what Is different from the previous code (shown in boldface type). For
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instance. in line 2 he has added "zero" as an extension of "(defun fact (n) (cond ((."

insert Table 1 about here

In the first line, when the subject typed "(defun", the template

(defun <name> <parameters> <body>)

appeared. The terms in <-> angle brackets denote pieces of code the student will supply.

The subject then filled in the <name> slot and the <parameters> slot and had started to

fill in the <body> slot. Note that at all points, parentheses are balanced and syntax is

checked. The motivation here is to remove from the student some of the cognitive ',Jed

required for checking low-level syntax and to enable the student to focus on the conceptual

levels.

Although the student has some difficulty with the syntax of the conditional tests in lines

1 and 2, he basically codes the terminating case for the factorial function correctly.

Typically, we find students have little difficulty with terminating cases but have great difficulty

with recursive cases. The dialogue after line 3 illustrates how the tutor guides the student

through a design of the recursive function. Basically. it leads the student to construct a

couple of examples of the relationship between fact (n) and fact (n-1) and then gets the

student to identify the general relationship. Figure 2 shows the screen image at a critical

point in the design of this function.

Insert Figure 2 about heree
The dialogue after this point shows two errors that students make in defining recursive

functions. The first, in line 4, is to call the function directly without combining the recursive

call with other elements. The second, in line 8, is to call the function recursively with the

same argument rather than a simpler one.

After the student finishes coding the function he goes to the LISP window and
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experiments. He is required to trace the function, arKi the recursive calls embed and then

unravel. Figure 3 shows the screen image at this point with the code on top and the trace

below it.

Insert Figure 3 about here

This example illustrates a number of features of our tutoring methodology.

1. The tutor constantly monitors the student's problem-solving and provides direction

whenever the student wanders off one of the correct solution paths.

2. The tutor tries to provide help with both the overt parts of the problem solution

and the planning. However, to address the planning a mechanism had to be

introduced in the interface (in this case menus) to allow the student to

communicate the steps of planning.

3. The interface tries to eliminate aspects like syntax checking, which are irrelevant

to the problem-solving skill being tutored.

4. The interface is highly reactive in that it makes some response to every symbol

the student enters.

It is interesting to note the contrast between the LISP tutor and the PROUST system of

Johnson and Soloway (1984). That system provided feedback only on residual errors in the

program and does nut try to guide the student in the actual coding One technical

consequence is the PROUST system has to deal with disentangling multiple bugs. Since

the LISP tutor only corrects errors immediately, the code never 'ontains more than one bug

at a time.
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The Geometry Tutor

The geometry tutor is similarly base's on our earlier work studying geometry problem-

solving (Anderson, 1981, 1982, 1983a). Figure 4 illustrates how the problem is initially

presented to a student. At the top of the figure is the statement the student is trying to

prove. At the bottom are the givens of the problem. In the upper left corner is the

diagram. The system prompts the student to select a set of statements with a mouse.

Then the system prompts the student to enter a rule of geometric Inference that takes these

statements as premises. When the student has done so, the system prompts the student to

type in the conclusion that follows from the rule. The screen is updated with each step to

indicate where the student is. The sequence of premise, rule of inference, and conclusion

completes a single step of inference. Figure 5 illustrates the screen at the point where the

student has decided to apply definition of bisector to the premise Zr bisects LXJY but has

not yet entered the conclusion. A menu has been brought up at the left of the screen to

enable the entry of the conclusion. It contains the relations and symbols of geometry. By

pointing to symbols in the menu and to symbols in the diagram, the student can form the

new statement Z XJK ; LJKY. We find it useful to have the student actually point to the

diagram to make sure the student knows the reference of the abstract statements.

Insert Figures 4 and 5 about here

Figure 6 shows the geometry diagram at a still later point. The student has completed

the bisector inference and added a plausible transitivity inference but one that proves not to

be part of the final proof. At this point the student begins to flail and has tried a series of

illegal applications of rules, the most recent being application of angle-side-angle (AM) to

the premises LEJX ; LEJY and LEM ; .ZEXK The tutor points out that ASA requires

three premises, and so it clearly is inappropriate. Since the student is having so much

difficulty, the tutor points the student to the key step in solving this problem: To prove

A EJY ; AE10( one will have to prove A EJY ; A EJX and A EJX ; A EKY and then apply

transitivity. To explain this step the tutor is going to introduce the student to a step of
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backward inference. The tutor has boxed the conclusion and will step the student through

how transitivity of the two triangle congruences will enable the conclusion to be proven

The student then will have the task of proving the two triangle congruences.

Insert Figure 6 about here

Figure 7 shows the state of We diagram at a still later point where the student has

proven one of the triangle congruences while the other remains to be proven. It nicely

illustrates how students ca mix inferencing forward from the givens and reasoning

backwards from the conclus ns.

Insert Figure 7 about here

Figure 8 shows the completed proof in which there is a graph structure connecting the

givens to the to-be-proven statement. Students find such representations of proof solutions

onlightening in two ways. First, it enables them to appreciate how inferences combine to

yield a proof, something they tend not to get from the traditional two column formalism.

Second, the search inherent in proof generation is explicIty represented. So. for imtance.

students can immediately identify inferences. such as the angle transitivity inference. which

are off the main path.

Insert Figure 8 about here

The Algebra Tutor

The algebra tutor (Lewis, Milson, & Anderson, in press) is a more recent endeavor of

ours and does not have the prior history of domain study. It reflects an attempt to see

how well the methodology that we have developed transfers to a new domain. Figure 9

shows the initial interface that we have developed for the algebra tutor.

Insert Figure 9 about here
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We have tut led the computer's high resolution display into a sort of notebook/scratch-

pad/blackboard which is used to echo tutoring interactions and store a record of the user's

intermediate work. This I:40r allows the mouse to be used as the primary input device by

sensitizing regions on the screen to button activity on the mouse.

At the current time we have the following windows:

The Tutoring 1.iindow (made to resemble a blackboard): where tutorial
interactions are printed.

The Scratch-Pad: a key-pads 'or generating algebraic expressions which are
needed for responses to the tutoring Interactions.

The Current Equation Window: Always displays the current state of the equation
transformation process.

The History Window (made to resemble a notebook): a trace of the problem
solving is recorded for on-line review and later pcinting by the student.

Our goal was to make the interactions with the interface as easy as pencil and paper.

When generating responses to the tutorial dialog, students need not type anything on the

keyboard. in fact, in most case&, the response can generated by pointing to parts of the

existing expressions in the current equation window. By using pointing instead of requiring

.tudents to regenerate complete expressions when only part might be changed. we can

eliminate a good number of slips in the early stages of learning algebra. Accidently

dropping a negative sign or forgetting to bring down a term are common errors when

moving from one equation to the newly transformed equation. By having students point to

expressions and having the system bring down tie un-transformed parts of the equation

Intact, we can minimize the chance that these low level errors would interfere with the goal

of the lesson, e.g., practicing the distributive law in equation solving.

Summarizing the Model-Tracing Methodology

The most distinctive feature of the model- tracing methodology is how closely it sticks to

the target task it is supposed to be tutoring. Declarative instruction takes the form of

commented examples of correct problem-solving and .mments on the student's problem
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solution. This is the kind of instruction that we believe can be effectively turned into

procedures. The major activity of the tutor is monitoring students' problem solving. We

attempt to create highly interactive interfaces that quickly let the students know when their

solutions deviate from idea, solution behavior and just where they deviate. This kind of

instructional environment has a highly orocedural flavor and contrasts with the more abstract

and declarative instruction in some tutoring efforts (e.g.. Coffins. Warnock, and Passafuime.

1975). This reflects fundamental differences about the nature of the knowledge to be

communicated and about how that knowledge is communicated.

Implementing the Model-Tracing Methodology

A major prerequisite to implementing a model-tracing tutor is to create all the production

rules that will be involved in the tracing. A significant subtask here is adding an adequate

set of buggy rules to the student model in order to be able to account for the errors we

see. In our experience the best we have been able to do is to account for about 80% of

the errorsthe remaining being just too infrequent and too removed from the correct answer

to yield to any analysis. One approach to coding tne systematic errors has been simply to

observe the errors students make with our tutor, try to understand their origin, and code the

inferred buggy productions one by one into he sown. In more recent work such as in

our algebra tutor we are trying to generate these err principled basis something like

in the notable work on subtraction (Brown & Burton. 1978; Brown & VanLehn. 1980) and on

algebra (Matz. 1982).

Given a production set which can model the range of behaviors we see in our students,

our tutor design then can be decomposed into three largely independent modules. There is

the student module which can trace the student's behavior through its non-deterministic set

of production rules. There is the pedagogical module which embodies the rules for

interacting with the student, for problem selection, and for updating the student model. The

separation between student model and pedagogical model is similar to the separation of

instruction from the instruction in a number of tutoring systems, including Brown, Burton, and
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DeKleer (1982) and Clancey (1982). Finally, there is the interface which has the

responsibility for interacting with the student. As a software engineering issue, these three

components can be developed separately with the pedagogical module responsible for

interaction- getting interpretations ar4 predictions from the student module and making

requests to the interface for interaction. While each module is complex, dividing a major

software project to three independent components is a major step in the direction of

tractability. Much of the subsequent discussion will be organized around issues involving

each of the components.

The Student Module

The basic responsibility of the student model is to deliver to the tutor an interpretation of

a piece of uehavior in terms of the various sequences of production rules that might have

produced that piece of Dehavior. The obvious methodology for doing that is to run our non-

deterministic student model forward and see what paths produce matching behavior. While

there are complexities and efficiencies that have been added to this basic insight this is the

core idea. The rest of the discussion of the student model is concerned with issuer raised

in trying to implement this core idea.

Nondeterminacy in the production sequence is a major source of problems in

implementing the model-tracing methodology. We face nondeterminacy whenever multiple

productions in the student module produce the same output. (For instance, in the algebra

tutor the student says he wants to apply distribution, and there are multipie possible

distributions in the equation.) A special case of this is when productions produce no overt

output as when a student is doing some mental calculating or pianning. What to do in the

case of such planning nondeterminacy is an interesting question. The set of potential paths

can explode exponentially as the simulation goes through unseen steps of cognition. Also,

the potential for actually effectively tutoring these steps is weakened the greater the distance

between the mental mistake and the feedback on that decision. Therefore, one is naturally

tempted to query the student as to wh i he is thinking-that is, to force an association of
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some output with the mental steps. On the other hand, it is difficult to design an interface

which can trace planning in a way that does not put an undue burden on the student.

Students often resent even giving vocalized answers to the question "what A re you thinking

about" and there is reason to believe such simultaneous report generation may interfere with

the problem-solving (Ericsson and Simon, 1984). The interaction in the LISP tutor trace in

which the tutor tfiGS to work through the recursive plan for factorial is one instance of our

effort at tracing planning. While we have some evidence that such interactions help.

students report that they do not like being slowed down by having to go through menu

interactions. In the algebra tutor students are encouraged to use the screen interface to

work out mental calculations. This seems to be working out fairly well.

Another example of the problem created by non-detemlinancy is that misunderstandings

and slips can often produce the identical behavior. For instance, students can confuse

CONS and LIST in programming either because they really do not understand the difference

or as a result of a momentary lapse (Anderson & Jeffries, 1985). The student mode: must

be capable of delivering both interpretations to the tutor, leaving to the tutor the task of

assessing the relative probability of the two interpretations and deciding what remedial action

should be taken.

A major complication we face when we try to trace a student's problem-solving is that

running a production-system in real time can create serious problems. Students will not sit

still as a system muddles for minutes trying to figure out what the student is doing. They

will not pace their problem-solving to assist the diagnosis program. Interestingly, our

observation has been that human tutors have problems with real-time diagnosis and one of

the dimensions on which human 'tors become hetter with experience is real-time diagnosis.

Production systems, for all their advantages, are by and large not the most efficient way

to solve problems. Analysis has typically shown that their computation time tends to be

spent in pattern matching. The inherent computational problems of production systems are

exacerbated in tutoring for a Number of reasons:
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(1) The grain size of modeling is often smaller than would be necessary in expert-system

applications. and the complexity of the production patterns required to expose the source of

student confusions is often considerable.

(2) The system has to consider enough productions at any point to be able to recognize

all next steps that a student might produce. This contrasts with many applications where it

is sufficient to find a production that will generate a single next step.

(3) Often it is not clear which of a number of solution paths a student is on and the

production system has to become non-deterministic to enable a number of paths to be

traced until disambiguating information is encountered.

The production systems we have produced have all involved :ariations on the RETE

algorithm developed by Porgy (1982) tor pattern-matching which has supported many of the

OPS line of production systems. However, we have not had good success with simply using

OPS as our expert system because the pattern- matching for each domain has special

constraints upon which we have had to try to optimize. Anderson, Boyle, and Yost (1985)

contains a discussion of this issue for the domain of ,geometry.

A major issue in designing the pattern matcher for a domain is to decide how much

detail of the actual problem should be represented. For instance. if one was developing al

algebra tuidi it is useful to have different representations for to the following two expressions

during the early stages of teaching factoring:

2AB + 4A
2E3A + 4A

There is evidence that the first expression can be more easily factored into 2A(B + 2) than

can the second expression: Commutativity of multiplication is not automatic in many

students, and the common factor of 2A might not be seen in the second expression above.

On the other hand, when we look at students who have mastered algebra and are learning

calculus, it is no longer necessary to represent the distinction between these two forms.

This means that in calculus we can use certain "canonicalizations" that simplify the pattern
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matching and reduce the number of productions.

The computational cost associated with implementing such production systems has a

space as Well as a time dimension. The r ter of productions can be on the order of

thousands to tutor a domain and the RETE algorithm can be space expensive storing partial

products of pattern matching.

Ot course, it is an open question just how efficient in time and space we can make our

production system implementations. In their current form they are just within the threshold

of acceptability, which is to say students are barely satisfied with tha performance of a

maohine like a Dandy Tiger with over three meg of memory. However, there are reasons for

us not to be satisfied with this performance. In the first place such machines are still a

good deal beyond the range 'of econom c feasibility. Secondly, efficiency issues impact on

the range of topics we hi 1e. This manifests itself in a number of ways:

(1) Problems tend to become more costly as they become larger even if the larger

problems involve the VMS, underlying knowledge. Therefore, there is a artificial size limit on

the problems we tutor students on.

(2) Progress into more advanced topics is as much limited by dealing with the added

computational burden posed by these topics as with adequately understanding and modelling

the domain.

(3) The actual tutoring interactions become limited by the need to reduce non-

determinacy. For instance, some of our tutors force a particular interpretation of the

s'itclent's behavior on t N student, rather than waiting until the student generates enough of

the solution to eliminate the ambiguity.

Compiling the ModelTracing

If one looks at all possible sequences of productions that can be generated in any of

our models, one finds that it defines a problem-space of finite cardinality.. That cardinality
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can be quite large but often simply because we are looking at different permutations of

independent or nearly independent steps in a problem solution. This suggests that if we

are clever in our representation of tht problem space we need not dynamically simulate the

student in order to interpret him. Rather, we can generate beforehand the problem -spp.,:te

just use the student's behavior during problem solving to trace through this pre-

completed problem space. Given the cost of real-time simulation with a production system,

this seems that it might be a worthwhile step. (In fact, we obtained a 50% performance

improvement in our LISP tutor by a partial implementation of this step.)

There are other advantages to having the complete problem space compiled in advance

of the actual tutoring session. This makes it easy for the tutor to look ahead and see

where a step in the problem solutido will lead. Met; a production rule will be favored by

the ideal model but in fact not lead to a solution. For instance, there are geometry

problems where even experts make certain inferences which do not end up as part of the

final proof. It is the sort of heuristic inference which 9 times out of 10 is good but not in

this case. If the tutor recommended dead-end steps just because the ideal model makes

them, the student would quickly loose faith in the tutor. Human tutors also tend to look

ahead to make sure that their recommends ions lead somewhere.

The Pedagogical Module

One interesting observation about this framework is that it is possible to decouple the

pedagogical strategy from the domain knowledge. Domain knowledge resides in both the

student model and the interface. It is the pedagogical module that relates the two together

and which controls the interaction. This module does not really require any domain

expertise built into it. It Is concerned with (1) what productions can apply in the student

model, not the internal semantics of the productions; (2) what responses the student

generates and whether these responses match what the productions would generate, not

what these responses mean; and. (3) what tutorial dialogue templates are attached to the

productions, not what these dialogues mean.
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We are in fact working on a new PUPS-based tutor which is trying to implement this

realization in the limited domain of tutors for three programming languages - -LISP. ADA. and

Prolog. We have built student models for different programming domains independent of

tutoring strategy and have built different tutors to implement variations on tutoring strategy

independent of domain. Specific tutors can be generalist; by crossing the tutorial module

with the domain module without tuning one to another.

There are theoretical reasons for believing that we can create domain-free tutoring

strategies and that the optimal tutoring strategy will be domain free. Basically, our theory of

human skill acquisition leads us to believe that the basic teaming principles are domain free.

The optimal tutoring strategy would simply optimize the functioning of these learning

principles.

However, in our current running systems we have built a separate tutor for each domain.

While it is not the case that the tutoring strategies they implement are identical, they are

quite similar and we have claimed publically that they are attempts to embody a strategy

based on the ' -7 learning theory (Anderson, Boyle, Farrell, & Reiser, in press). However,

in retrospect it is becoming clear that some of the features of these strategies were

determined by issues of technical feasibility in a way that they need not have been. It is

useful to idontify what the features of the common tutoring strategy are and what the

variations on the strategy could be It will become clear that. when we look at any

dimension of tutoring, there are conflicting considerations as to what the optimal choice

should be.

(1) immediacy of Feedback.

The policy on immediacy of feedback is well-illustrated by the LISP tutor. The LISP

tutor insists that the student stay on a correct path and immediately flags errors. This

minimizes problems of indeterminacy. There are a number of reasons for desiring

immediacy of feedback besides this technical one. First, there is ample psychclogical

t.
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evidence that feedback on an error is effective to the degree that is given in close proximity

to the error. The basic reason for this is that it is easier for the student to analyze his

mental state that led to the error and make appropriate correction. Second, immediate

feedback makes learning more efficient becauSe it avoids long episodes in which the student

stumbles through incorrect solutions. Third, it tends to avoid the extreme frustration that

builds up as the student struggles unsuccessfully in an error state.

However, we have discovered a number of problems with the use of immediate feedback:

(a) The feedback has to be carefully designed to force the student to think. If at all

possibI3, the feedback should be such that the student is forced to calculate the correct

answer rather than just being given the answer (Anderson, Kulhavy, & Andre, 1972). It is

important to learning that the student go through the thought processes that generate the

answer rather than copy the answer from the feedback.

(b) Sometimes students would have noticed the error and corrected it if we just gave

them a little more time. Self-correction is preferable when it would happen spontaneously.

(c) Students can find immediate correction annoying. This is particularly true of more

experienced students. Thus, novice programmers generally liked the immediate feedback

feature of our LISP tutor whereas experienced programmers did not. While our goal is not

to produce positive affective response, it probably does have some impact on learning

Outcome.

(d) Often it is difficult to explain why a student's choice is wrong at the point at which

the ems is first manifested because there is not enough context. To consider a simple

example, ownpare a Cadent who Is going to generate (append (list x) y) where (cons x y)

is better. It is much easier to explain the choice after the complete code has been

generated rather than after (append.... has been typed.

There is no reason why the model-tracing paradigm commits us to immediate feedback,
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although as noted there are psychological reasons for choosing it. One of the variations we

would like to explore with our PUPS-tutor is a system that gives feedback after "complete"

expressions like (append (list x) y). This will enable the student some opportunity for self

correction if the correction occurs before the expression is complete and provide a larger

context for instruction. On tne other hand the distance between error and feedback will still

be limited. We have also thought about varying the amount of code we would take in

before instruction as a function of experience.

(2) Sensitivity to Student History.

By and large we have used what we have called a "gener'^" student model in our

tutoring. At each point in time we are prepared to process all the production rules that we

have seen any student use, correct or buggy. If students make an error we give the same

feedback independent of their history. The only place we show sensitivity to student history

is in presenting remedial problems to students who are having difficulties. It is relatively

easy to implement a generic student model, and the question is whether there is any reason

to go through the complexity of tailoring the model to the student.

There is one aspect of this generic student model which derives from our theory of skill

acquisition and another aspect which does not. The aspect that is theoretically justified is

the belief that there are not different types of students who will find different aspects of a

problem differentially hard. That is. our theory does not expect individual differences in

learning, beyond some overall difference in ability or motivation. The theory implies that all

people learn in basically the same way. Of course, it is an open question whether there is

empirical evidence for tha theory on this score. In our own research it does appear that

students differ only In a single dimension of how well they learn. Despite valiant searches

we have yet to find evidence that one set of productions cluster together as difficult for one

group of students while a different cluster of productions are difficult for another group of

students.
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The aspect of use of a generic model that does not den, e from the theory is the

assumption that past history of uie with a rule implies nothing about the interpretation of a

current error. We have evidence that different subjects continue to have trouble with

specific different rules. (This is to be contrasted with a trait view that says there is a non-

singleton set of productions that a number of subjects will have difficulty with). If the

student has had a past history of success on a rule it is more likely that error reflects a

slip, rather than some fundamental misunderstanding. Currently, our tutors treat all errors as

if they reflected fundamental misconceptions and offers detailed explanation, but the better

response sometimes would be simply to point the error out.

(3) Problem Sequence

The existing tutors implement a mastery model for controlling selection of problems to

present to the student. They maintain an assessment of the student's performance on

various rules and have knowledge of what problems exercise what rules. They will not let

the student move on to problems involving new rules until the student is above a threshold

of competence on the current rules. If the student has not demonstrated mastery, the tutor

will select additional problems from the current set which exercise rules on which the

student is weak.

While such a mastery policy for problem sequence may seem reasonable and there is

evidence in the educational literature for its effectiveness (Bloom, 1984), it is interesting to

inquire as to its underlying psychological rationalization. Why not go onto new problems

while the student is weak on current knowledge and teach both the new knowledge and the

old weak knowledge in context of the new problems. Fundamentally, it rests on a belief in

an optimal learning load-that if we overload a student with too many things to learn, he will

learn none of them well. On the other hand, students are advanced to new material at

some point when further training on the old material could have improved their performance

even more. So there is a countervailing assumption about diminishing returns-that at some

point the gain in improving performance on old rules is not equal to gain in learning new
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rules.

Our choice about exactly where to set the mastery level has been entirely ad hoc. In

the ACT and PUPS theories working-memory load affects learning and problems pose less

load as they become better learned. However, these processes are not specified in a way

that enables us to define an optimal next problem. The issue of problem sequence and

mastery levels remains to be worked out in a model tracing paradigm.

(4, Declarative Instruction

A student's first introduction to the knowledge requires' to solve a class of problems is

typically not from the tutor; rather it is declarative instruction typically in textbook or lecture

format. How should this declarative instruction be formulated to make it maximally helpful in

learning the skill? Given our analysis of learning by analogy, instruction should take the

form of examples appropriate for mapping into problem solutions. Given our PUPS

structures, it is not enough that the student simply have the form slots of these structures

properly represented; it is critical for successful learning that the student have properly

represented the function of these structures and any prerequisites to these structures

achieving their functions. For example. Pirolli and Anderson (1985) showed that. while all

students :earn recursive programming by analogy to existing programs. what determines how

well they learn is how well they represent how these programs achieve their function.

Basically, students often understand an example only superficially and thus emerge from

analogy with mischaracterizations of the range of problems for which the structures in the

example are appropriate.

In our efforts to create textual instruction to go along with our tutors, we have focused

on the issue of giving good examples for purposes of mapping and trying to assure that the

student achieves the right encoding of the example. Indeed, we are producing a LISP

textbook (Anderson, Corbett, Reiser, in press) which consists mainly of et.. .fully crafted

examples with explanation aimed at promoting the right encoding.

33
m..tr 7-4



www.manaraa.com

30

The Interface

One might have thought that given the discussion above, the description of tutoring

would be complete. We have stated how it models a student and how it uses that model

to achieve pedagogical goals. However, this discussion is abstract and leaves completely

unspecified what the student actually experiences, which is the computer interface. We

have learned that design of the interface can make or break the effectiveness of the tutor.

Below are just a few examples:

1. Early in the history of the LISP tutor we had a system in which the student entered

code in a buffer and then dispatched the contents of that buffer to appear in a code

window. The students were always getting coidused about what code they should be

entering. We changed this to a system where one typed the new code right into the old

code and all of these confusions di,' speared.

2. An early version of the algebra tutor had a system where students entered a next

equation, the tutor figured out what steps they engaged in, and tried to give appropriate

feedback and point them back to the right track. The problem was that the students' error

might wall have been at some intermediate step that the students were no longer fixated

upon (e.g.. adding two fractions as part of moving a number across the equation sign). It

was very difficult to communicate to the student what the problem was. We introduced the

system described earlier in this paper in which the student actually stepped through the

microsteps of the transformation in a relatively painless way with the system. The tutor

could flag the errors as they occurred and these miscommunications disappeared.

3. We used to have our students type in geometry statements through a typical

keyboard. Given the rather special syntax of geometry statements, students would often enter

basically correct statements in syntactically incorrect form. When the system told them it

could not understand what they meant, they doubted their understanding of the problem and

often regressed. We replaced this with a system that allowed them to use a mouse to
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enter statements by pointing to a menu of geometry expressions. We also introduced a real

time parser which flagged them as soon as they entered a term which would make their

expression syntactically illegal. Again our difficulties disappeared.

4. The graphical structure we use to represent geometry statements (Figures 4-5) seems

to be the key to enabling students to understand the structure of a proof even though it is

essentially isomorphic in logical structure to a linear proof. The graphical structures make

explicit the logical relationship they would have to infer.

5. In all of our tutors it seems critical to spend considerable time fashioning the English

to make it as brief and as understandable as possible. If students face great masses of

hard-to-understand prose, they will simply not process the message.

6. Performance on the LISP tutor improved when we introduced a facility to bring up

the problem statement at any point in time, and when there is room on the screen, the

problem statement is automatically displayed. Performance in the geomety tutor improved

when we introduced a facillity for bringing up statements of geometry postulates at will.

7. One of the major disadvantages of all of our tutors compared to human tutors ;a that.

at least so far. they use only the visual medium. This means that students must move their

eyes from the problem to process the textual instruction In contrast. with a human tutor.

the student can listen to the tutor while continuing to look at the the problem and even

have parts of the problem emphasized through the tutor's pointing.

These observations illustrate two general points about interface design for tutors:

(a) It is important to have a system that makes it clear to a student where he or she is

in the problem solution and where their errors are (Observations 1, 2, and 3)

(b) It is important to minimize working memory and processing load involved in the

problem solving (Observations 4, 5, 6, and 7).
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While one wants an interface with these properties, it is important that the interface itself

be easy to learn and use. One does not want the task of dealing with the interface to

come to dominate learning the subject material. An easy interface is one that minimizes the

number of things to be learned and minimizes the number of actions (e.g., keystrokes,

mouseclicks) that the student has to perform to communicate to the tutor. Its leamability is

enhanced if it is as congruent with past experience as possible. It should also have a

structure that is as congruent as possible with the problem structure. Finally, the actions

should be as internally consistent as possible.

Conclusions

What we have described is a theoretical framework for our tutoring work and some

experiences based on that framework. Both the tutors and the theory are evolving objects

and so it is not the case that the current embodiments of our tutors reflect all of the

current insights if our theory. StM there is an approximation here, and it is worthwhile to

ask to what degree has our tutoring experience been successful and to what degree has

our tutoring experience confirmed the theory.

The first observation is that student3 do seem to itgtrn from the tutors. We think this is

quite a remarkable fact and not something that we had really believed would work so well

when we set out to build these tutors. We have taken cognitive models of the information-

processing, embedded them in instructional systems, and nothing has fallen apart. They can

embody substantial amounts of material, can be developed in feasible time, run within

acceptable bounds of efficiency, and are robust in their behavior. While we have no truly

satisfactory evaluations of the tutors they seem to be better than solving problems with nn

tutor and students claim to enjoy working with them. This feasibility demonstration gives

some credence to the general theoretical framework in which the tutors were built.

It is a separate question of whether the students behave and learn with the tutors as

the theory would predict. This is a difficult question to assess because the theory is
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probabilistic and does not specify in advance probabilities such as the probability of

encoding a production: rather these probabilities would have to be estimated from the data

It is also difficult because the theory makes predictions only given students' encodings of

the instruction and of the problem, and students clearly do vary in how they encode this

information. Nonetheless, what analyses we have done do seem to confirm the theory.

Figure 10 presents an analysis of some data from the LISP tutor that monitors time to type

in code corresponding to the firing of individual productions. So for instance typing "(cons"

col responds to the firing of a production that recognizes the applicability of the CONS

function. We have put in times associated with the firing of productions learned in lessons

1, 2, and 3. We have plotted averages for all the productions introduced in a lesson but

these averages are typical of individual productions (Anderson, in press). What these times

include is somewhat compl because they include a lot of low-level interactions with the

tutor. However, they shouio reflect the learning of the production or productions associated

with the execution of the code. These learning curves have just the shape we would

predict. There is a big drop from first application of a production to second as the

knowledge is compiled into production form and gradual speed-up after that as the

production rules become strengthened.

Insert Figure 10 about here

Another observation is the: the knowledge acquired does seem to have the appropriate

range. For instance, in the geometry tutor students can apply new combinations of the

inference rules that they have learned to solve a new problem as long as the contextual

heuristics that recommend the application of these rules are ones they have already

encountered. On the other hand if they are presented with a problem that can be solved

by the knowledge they have been taught, but which requires applying a new contextual

heuristic to see the applicability of that rule, they experience great difficulty.

37
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Table 1

Define the function fact. It takes a number argument, n and computes the factorial of r , which is the

result of multiplying n x n-1 x n-2 ... x 1. For instance. (fact 3) 3 x 2 x 1 . 6. By definition, the

factorial of 0 is 1.

1. (defun fact (n)
(cond ',equal) <ACTION>)
<RECURSIVE-CASE >))

I assume that you are trying to test if the number argumer is Kw' to the number

zero. There is a special function for testing equivalence to zero fry to use that function

instead of EQUAL.

What code can you WEiJ to test if the condition for teiminating case is true? Tr'i writing

a predicate.
..,

2. (defun fact (n)
(cond ((zero <ACTION : -)

<RECURSIVE-CASE>))

Did you mean zerop (y or n)? y

3. (defun fact (n)
(cond ((mop n) 1)

e RECURSIVE-CASE>))

Is the value of fact in the recursive cases calculated by
PRESS: IF YOU WANT TO:
1 Calling fact recursively with n.
2 Multiplying n by fact of n minus 1.
3 Getting 1 2 ... n and then multiplying the resulta.
4 have the tutor choose

Menu choice: 3

That Is a reasonable way to think of doing factorials but it is not a plan for a recursive

function. Since you seem to be having trouble with the recursive cases let us work through

some examples and figure out the conditions and actions for each of these cases.

The recursive relationship is the relationship between fact cailed
with n and fact called with:
PRESS: IF YOU WANT TO:
1 n minus 1
2 n equal to 0
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3 n plus 1

4 have the tutor choose
Menu choice: 1

We will consider some concrete examples. We will characterize the recursive relationship

between fact called with 1 and fact called with 0

What is the value of (fact 1)?
Answer: 1

What is the value of (fact 0)?
Answer: 1

EXAMPLES
fact (n) fact (n - 1)

A. (fact 1) a I (fact 0) in 1

We will consider some more concrete examples. We will characterize the recursive

relationship between fact called with 3 and fact called with 2

What is the value of (fact 3)?
Answer:

What is the value of (fact 2)?
Answer: 2

EXAMPLES

fact (n) fact (n - 1)

A. (fact 1) a 1 (fact 0) a 1

B. (fact 3) = 6 (fact 2) = 2

Since there is only one recursive case characterized by the examples you have just

worked out, the condition in this case can to just coded as T. We will just ft,cus on

characterizing the action in this case.

In examples A and B what do you have to do to get the result of
fact called with n?
PRESS: IF YOU WANT TO:
1 Multiply n by one less than n.
2 Multiply n by fact of one less than n.
3 Add n to the result of fact called with one less than n.
4 have the tutor choose

Menu choice: 2

We have now worked through a series of examples that ;%istrate the recursive relation
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We will now return to the goal of trying to produce LISP code that specificies the recursive

relation

4. (defun fact (n)
(cond (( zerop n) 1)

(t (fact )))

You will have to use fact at some point but right now you want to multiply.

5. (defun fact (n)
(cond ((zerop n) 1)

(t (times <NUM> <NUM2>))))

What do you want to do first?
PRESS: IF YOU WANT TO:
1 Write code to get the number argument
2 Write code to get the recursive part

Menu choice: 1

6. (defun fact (n)
(cond ((zerop n) 1)

a (times n (fact n))))),

You cannot just code n at this point. What you want to do is subtract one from n.

7 (defun fact (n)
(cond ((zerop n) 1)

(t (times n (fact (difference )))))

Difference would work in this case but it is more appropriate to use the function SUB1

when you are subtracting 1 from a number

8 (defun fact (n)
(cond ((zerop 11) 1)

(t (times n (fact (subl n))))))

YOU ARE DONE. TYPE NEXT TO GO ON AFTER ---
--- TESTING THE FUNCTIONS YOU HAVE DEFINED ---

- >(race fact)
(fact)
. > (fact 3)
1 <Eier> fact (3)
12 <Enter> fact (2)
I 3 <enter> fact (1)
1 14 <Enter> fact (0)

No

THE LISP WINDOW

43
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1 14 <EXIT> fact 1

1 3 <EXIT> fact 1

12 <EXIT> fact 2
1 <EXIT> fact 6
6

44
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Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
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Figure Captions

A problem that occurs early in the problem sequence used with the
geometry tutor.

The screen configuration before line 4 in Table 1.

The screen configuration at the end of the dialogue in Table 1.

An initial screen configuration with the geometry tutor.

The screen configuration atter the student has selected the premises and
the rule and is about to enter the conclusion.

The student has just tried to apply ASA to the two premises LEA
ZEN, LEX.) ; LOCK

T I.:. student has succeeded in proving one of the two requisite triangle
cor jruence3.

Th3 proof of the problem is now complete.

The algebra tutor's interface. The tutoring window is at the top. Below
is the current equation. The notebook below keeps a history of the
problem solution.

Plot of learning data from the LISP tutor. Time is plotted to code symbol
corresponding to the firing of productions that were introduced in the 'first.
second, and third lessons.
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Given: AB -= BC
AC =. CD

Prove: A ABD .--; a CBD

4h
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In examples A and B what do you have to do to get the result
of fact called with n?
PRESS: IF YOU WANT TO:
1. Multiply n by one less than n.
2. Multi,* n by fact of one less than n.
3. Add n to !rot result ol fact called with one less than n.
4. Have the tutor choose.
Menu Choice: 2

CODE FOR fact

(defun fact (n)
(cond ((zerop n) 1)

<RECURSIVE-CASE>))

EXAMPLES

fact (n) fact (n-1)
A. ((act 1) = 1 (fact 0) = 1

B. (fact 3) = 6 (fact 2) = 2

,

47
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--- YOU ARE DONE. TYPE NEXT TO GO ON AFTER ---
--- TESTING THE FUNCPONS MI HAVE DEFINED ---

(defun fact (n)
(coed ((zerop n) 1)

(t (times n (fact (subl n))))))

THE LISP WINDOW

= > (trace fact)
(fact)

= > (fact 3)
1 <Enter> fact (3)
2 <Enter> fact (2)
3 <Enter> fact (1)
14 <Enter> fact (0)
14 <EXIT> fact 1

3 <EXIT> fact 1

2 <EXIT> fact 2

1 <EXIT> fact 6

6

0 4 8
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